CS 188: Artificial Intelligence Spring 2007

Lecture 3: Queue-Based Search 1/23/2007

Srini Narayanan – UC Berkeley

Many slides over the course adapted from Dan Klein, Stuart Russell or Andrew Moore

Announcements

- § Assignment 1 due 1/30 11:59 PM
 - § You can do most of it after today
- § Sections start this week
- § Stay tuned for Python Lab

Summary

- § Agents interact with environments through actuators and sensors
 - § The agent function describes what the agent does in all circumstances
 - § The agent program calculates the agent function
 - § The performance measure evaluates the environment sequence
- § A perfectly rational agent maximizes expected performance
- § PEAS descriptions define task environments
- § Environments are categorized along several dimensions:
 - § Observable? Deterministic? Episodic? Static? Discrete? Single-agent?
- § Problem-solving agents make a plan, then execute it
- § State space encodings of problems

Problem-Solving Agents

```
function SIMPLE-PROBLEM-SOLVING-AGENT (percept) returns an action static: seq, an action sequence, initially empty

state, some description of the current world state

goal, a goal, initially null

problem, a problem formulation

state ← UPDATE-STATE(state, percept)

if seq is empty then

goal ← FORMULATE-GOAL(state)

problem ← FORMULATE-PROBLEM(state, goal)

seq ← SEARCH (problem)

action ← FIRST(seq); seq ← REST(seq)

This is the hard part!

return action
```

- § This offline problem solving!
- § Solution is executed "eyes closed.

Tree Search

- § Basic solution method for graph problems
 - § Offline simulated exploration of state space
 - § Searching a model of the space, not the real world

```
function TREE-SEARCH( problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree end
```

A Search Tree

§ Search:

- § Expand out possible plans
- § Maintain a fringe of unexpanded plans
- § Try to expand as few tree nodes as possible

Tree Search

```
function Tree-Search (problem, fringe) returns a solution, or failure
   fringe \leftarrow Insert(Make-Node(Initial-State[problem]), fringe)
   loop do
        if fringe is empty then return failure
        node \leftarrow \text{Remove-Front}(fringe)
        if Goal-Test(problem, State(node)) then return Solution(node)
        fringe \leftarrow InsertAll(Expand(node, problem), fringe)
function Expand (node, problem) returns a set of nodes
   successors \leftarrow the empty set; state \leftarrow STATE[node]
   for each action, result in Successor-Fn(problem, state) do
        s \leftarrow a new Node
        PARENT-NODE[s] \leftarrow node; ACTION[s] \leftarrow action; STATE[s] \leftarrow result
        Path-Cost[s] \leftarrow Path-Cost[node]+Step-Cost(state, action, result)
        Depth[s] \leftarrow Depth[node] + 1
        add s to successors
   return successors
```

General Tree Search

- § Important ideas:
 - § Fringe
 - § Expansion
 - § Exploration strategy
- § Main question: which fringe nodes to explore?

Search Nodes vs. States

Search Nodes vs. States

States vs. Nodes

- § Problem graphs have problem states
 - § Have successors
- § Search trees have search nodes
 - § Have parents, children, depth, path cost, etc.
 - § Expand uses successor function to create new search tree nodes
 - § The same problem state may be in multiple search tree nodes

Uninformed search strategies

- § (a.k.a. blind search) = use only information available in problem definition.
 - § When strategies can determine whether one nongoal state is better than another → informed search.
- § Categories defined by expansion algorithm:
 - § Breadth-first search
 - § Depth-first search
 - § (Depth-limited search)
 - § Iterative deepening search
 - § Uniform-cost search
 - § Bidirectional search

State Space Graphs

- § There's some big graph in which
 - § Each state is a node
 - § Each successor is an outgoing arc
- § Important: For most problems we could never actually build this graph
- § How many states in 8puzzle?

Laughably tiny search graph for a tiny search problem

Example: Romania

Example: Tree Search

State Graphs vs Search Trees

a

Review: Depth First Search

Strategy: expand deepest node first

Implementation: Fringe is a LIFO stack

Review: Breadth First Search

Strategy: expand shallowest node first

Implementation: Fringe is a FIFO queue

Search Algorithm Properties

- § Complete? Guaranteed to find a solution if one exists?
- § Optimal? Guaranteed to find the least cost path?
- § Time complexity?
- § Space complexity?

Variables:

n	Number of states in the problem
b	The average branching factor B
	(the average number of successors)
C^*	Cost of least cost solution
S	Depth of the shallowest solution
m	Max depth of the search tree

DFS

Algorithm		Complete	Optimal	Time	Space
DFS	Depth First Search	Ν	N	Infinite	Infinite

- § Infinite paths make DFS incomplete...
- § How can we fix this?

DFS

§ With cycle checking, DFS is complete.

Algorithm		Complete	Optimal	Time	Space
DFS	w/ Path Checking	Y	N	$\mathrm{O}(b^m)$	O(bm)

§ When is DFS optimal?

BFS

Algorithm		Complete	Optimal	Time	Space
DFS	w/ Path Checking	Y	N	$O(b^m)$	O(bm)
BFS		Y	N*	$O(b^{s+1})$	$O(b^{s+1})$

§ When is BFS optimal?

Comparisons

§ When will BFS outperform DFS?

§ When will DFS outperform BFS?

Costs on Actions

Notice that BFS finds the shortest path in terms of number of transitions. It does not find the least-cost path.

We will quickly cover an algorithm which does find the least-cost path.

Uniform Cost Search

Expand cheapest node first:

Fringe is a priority queue

Priority Queue Refresher

§ A priority queue is a data structure in which you can insert and retrieve (key, value) pairs with the following operations:

pq.push(key, value)	inserts (key, value) into the queue.		
pq.pop()	returns the key with the lowest value, and removes it from the queue.		

- § You can promote or demote keys by resetting their priorities
- § Unlike a regular queue, insertions into a priority queue are not constant time, usually O(log n)
- § We'll need priority queues for most cost-sensitive search methods.

Uniform Cost Search

§ What will UCS do for this graph?

§ What does this mean for completeness?

Uniform Cost Search

Algorithm		Complete	Optimal	Time	Space
DFS	w/ Path Checking	Y	N	$O(b^m)$	O(bm)
BFS		Y	N	$O(b^{s+1})$	$O(b^{s+1})$
UCS		Y*	Y	$\mathrm{O}(b^{C*/e})$	$\mathrm{O}(b^{C*/e})$

We'll talk more about uniform cost search's failure cases later...

Uniform Cost Problems

- § Remember: explores increasing cost contours
- § The good: UCS is complete and optimal!
- § The bad:
 - § Explores options in every "direction"
 - § No information about goal location

Depth-limited search

depth-first search with depth limit *I*, i.e., nodes at depth *I* have no successors

§ Recursive implementation:

```
function Depth-Limited-Search (problem, limit) returns soln/fail/cutoff
Recursive-DLS (Make-Node (Initial-State [problem]), problem, limit)

function Recursive-DLS (node, problem, limit) returns soln/fail/cutoff
cutoff-occurred? ← false
if Goal-Test [problem] (State [node]) then return Solution (node)
else if Depth[node] = limit then return cutoff
else for each successor in Expand (node, problem) do
result ← Recursive-DLS (successor, problem, limit)
if result = cutoff then cutoff-occurred? ← true
else if result ≠ failure then return result
if cutoff-occurred? then return cutoff else return failure
```

Iterative deepening search

```
function Iterative-Deepening-Search (problem) returns a solution, or failure  \begin{array}{c} \text{inputs: } problem, \text{ a problem} \\ \text{for } depth \leftarrow \text{ 0 to } \infty \text{ do} \\ result \leftarrow \text{Depth-Limited-Search} (problem, depth) \\ \text{if } result \neq \text{cutoff then return } result \end{array}
```

Iterative deepening search *l* =0

Limit = 0

Iterative deepening search /=1

Iterative deepening search *l* =2

Iterative deepening search *l* = 3

Iterative deepening search

§ Number of nodes generated in a depth-limited search to depth d with branching factor b:

$$N_{DLS} = b^0 + b^1 + b^2 + \dots + b^{d-2} + b^{d-1} + b^d$$

§ Number of nodes generated in an iterative deepening search to depth d with branching factor b:

$$N_{IDS} = (d+1)b^0 + db^{\Lambda 1} + (d-1)b^{\Lambda 2} + ... + 3b^{d-2} + 2b^{d-1} + 1b^d$$

- § For b = 10, d = 5,
 - $N_{DIS} = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111$
 - $N_{IDS} = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456$
- § Overhead = (123,456 111,111)/111,111 = 11%

Iterative Deepening

Iterative deepening uses DFS as a subroutine:

- Do a DFS which only searches for paths of length 1 or less. (DFS gives up on any path of length 2)
- 2. If "1" failed, do a DFS which only searches paths of length 2 or less.
- 3. If "2" failed, do a DFS which only searches paths of length 3 or less.

....and so on.

Algorithm		Complete	Optimal	Time	Space
	w/ Path Checking	Y	N	$O(b^m)$	O(bm)
BFS		Y	N*	$O(b^{s+1})$	$O(b^{s+1})$
ID		Y	N*	$O(b^d)$	O(bd)

Summary of algorithms

Criterion	Breadth-	Uniform-	Depth- First	Depth-	Iterative
	First	Cost	First	Limited	Deepening
Complete?	Yes	Yes	No	No	Yes
Time	$O(b^{d+1})$	$O(b^{\lceil C^*/\epsilon ceil})$	$O(b^m)$	$O(b^l)$	$O(b^d)$
Space	$O(b^{d+1})$	$O(b^{\lceil C^*/\epsilon ceil})$	O(bm)	O(bl)	O(bd)
Optimal?	Yes	Yes	No	No	Yes

Extra Work?

§ Failure to detect repeated states can cause exponentially more work. Why?

Graph Search

§ In BFS, for example, we shouldn't bother expanding the circled nodes (why?)

Graph Search

§ Very simple fix: never expand a node twice

```
function GRAPH-SEARCH( problem, fringe) returns a solution, or failure

closed ← an empty set

fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do

if fringe is empty then return failure

node ← REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE[node]) then return node

if STATE[node] is not in closed then

add STATE[node] to closed

fringe ← INSERTALL(EXPAND(node, problem), fringe)

end
```

§ Can this wreck correctness? Why or why not?

Search Gone Wrong?

