CS 188: Artificial Intelligence
Spring 2007

Lecture 3: Queue-Based Search
1/23/2007

Srini Narayanan — UC Berkeley

Many slides over the course adapted from Dan Klein, Stuart
Russell or Andrew Moore

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Announcements

§ Assignment 1 due 1/30 11:59 PM
§8 You can do most of it after today

§ Sections start this week
§ Stay tuned for Python Lab

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Summary

§ Agents interact with environments through actuators and sensors
§ The agent function describes what the agent does in all circumstances
§ The agent program calculates the agent function
§ The performance measure evaluates the environment sequence

§ A perfectly rational agent maximizes expected performance
§ PEAS descriptions define task environments

§ Environments are categorized along several dimensions:

§ Observable? Deterministic? Episodic? Static? Discrete? Single-
agent?

§ Problem-solving agents make a plan, then execute it

§ State space encodings of problems

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Problem-Solving Agents

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state +— UPDATE-STATE(state, percept)
if seq is empty then
goal — FORMULATE-GOAL(state)
problem < FORMULATE-PROBLEM(state, goal)

; This is the hard part!

REST(seq)

action «— FIRST

(seq);
return action

§ This offline problem solving!
§ Solution is executed “eyes closed.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Tree Search

§ Basic solution method for graph problems
§ Offline simulated exploration of state space
§ Searching a model of the space, not the real world

function TRER-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

A Search Tree

Arad

C Arad > CFagaras> COradea (@mniu Vs

§ Search:

§ Expand out possible plans
§ Maintain a fringe of unexpanded plans
§ Try to expand as few tree nodes as possible

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Tree Search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe — INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE(node)) then return SOLUTION(node)
fringe — INSERTALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes

successors — the empty set; state < STATE[node]

for each action, result in SUCCESSOR-FN(problem, state) do
s+«—a new NODE
PARENT-NODE[s] < node; ACTION[s| < action; STATE[s| — result
PATH-CosT[« PATH-COST[node]+STEP-COST(state, action, result)
DEPTH[s] < DEPTH[node] + 1
add s to successors

return successors

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

General Tree Search

§ Important ideas:
§ Fringe
§ Expansion
§ Exploration strategy

§ Main question: which fringe nodes to explore?

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Search Nodes vs. States

8l 2]]

3| 4| 7

5/ 11 6

8 2| 7

3| 4

5| 11 6
8 2 8| 2 814 2
3 4| 7 3, 4| 7 3 4
5| 11 6 1. C 1. 0

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Search Nodes vs. States

8| 2 |
3| 4| 7
5/ 11 6
8L2L70 1 If states are allowed to be revisited,
3 4 the search tree may be infinite even
°| 11 6 when the state space is finite

8

3| 4

5] 1

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

States vs. Nodes

§ Problem graphs have problem states
§ Have successors
§ Search trees have search nodes
§ Have parents, children, depth, path cost, etc.
§ EXpand uses successor function to create new search tree nodes
§ The same problem state may be in multiple search tree nodes

parent, action

State 5 4 Node depth =6
g=6
6 1 8
= 1ale
7 Ul 3 || 2 s

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Uninformed search strategies

§ (a.k.a. blind search) = use only information
available in problem definition.

§ When strategies can determine whether one non-
goal state is better than another ® informed
search.

§ Categories defined by expansion algorithm:
§ Breadth-first search
§ Depth-first search
§ (Depth-limited search)
§ I|terative deepening search
§ Uniform-cost search
§ Bidirectional search

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

State Space Graphs

§ There’'s some big graph
In which
§ Each state is a node

§ Each successor is an
outgoing arc

§ Important: For most
problems we could
never actually build this

graph
§ How many states in 8- Laughably tiny search graph
puzzle? for a tiny search problem

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Example: Romania

MYVaslui

Hirsova

Eforie

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Example: Tree Search

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

State Graphs vs Search Trees

Each NODE in in the
search tree is an
entire PATH in the
problem graph.

s
d € P
/N /\
We almost always b C e h r
construct both on | N N
demand — and we a a nh r p q f
construct as little SN | 2N
as possible. p q f q C G
| /\ |
C a
q | G
a

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Review: Depth First Search

Strategy: expand
deepest node first

Implementation:
Fringe is a LIFO
stack

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Review: Breadth First Search

Strategy: expand) (& o) ©
shallowest node first

Implementation: d
Fringe is a FIFO
queue (r)

Search

<

Tiers

G a

C
|
a

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Search Algorithm Properties

§ Complete? Guaranteed to find a solution if one exists?
§ Optimal? Guaranteed to find the least cost path?

§ Time complexity?

§ Space complexity?

Variables:
n Number of states in the problem
b The average branching factor B

(the average number of successors)

C* Cost of least cost solution

S Depth of the shallowest solution

m Max depth of the search tree

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

DFS

Algorithm Complete |Optimal [Time Space
DFS | 2¢pm Fist N N Infinite Infinite

§ Infinite paths make DFS incomplete...

§ How can we fix this?

PDF created with pdfFactory Pro trial version www.pdffactory.com

A
(2
e

http://www.pdffactory.com

DFS

§ With cycle checking, DFS is complete.

4 1 node
b nodes
b2 nodes
m tiers <
\ / b™ nodes
Algorithm Complete |[Optimal |Time Space
/ Path
DFS \élvhgc?lzing Y N O(bm) O(bm)

§ When is DFS optimal?

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

BFS

§ When is BFS optimal?

PDF created with pdfFactory Pro trial version www.pdffactory.com

Algorithm Complete [Optimal ([Time Space
/ Path
DFS \élvhgc?lzing Y N O(bm) O(bm)
BFS Y N* O(bs+Y) O(bstY)
-
1 node
b nodes
s tiers <
b2 nodes
_ bs nodes
b™ nodes

http://www.pdffactory.com

Comparisons

§ When will BFS outperform DFS?

§ When will DFS outperform BFS?

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Costs on Actions

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.

We will quickly cover an algorithm which does find the least-cost path.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Uniform Cost Search

Expand cheapest node first:

Fringe is a priority queue

Cost
contours

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Priority Queue Refresher

§ A priority queue is a data structure in which you can insert
and retrieve (key, value) pairs with the following operations:

pg.push(key, value) inserts (key, value) into the queue.
DO returns the key with the lowest value, and
Pq-pop() removes it from the queue.

§8 You can promote or demote keys by resetting their priorities

§ Unlike a regular queue, insertions into a priority queue are not
constant time, usually O(log n)

§ We’'ll need priority queues for most cost-sensitive search
methods.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Uniform Cost Search

§ What will UCS do for this graph?

2O
1
mey—(a) |

§ What does this mean for completeness?

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Uniform Cost Search

Algorithm Complete |Optimal |Time Space
DFS g}gg&?ng Y N O(b™) O(bm)
BFS Y N O(bs+Y) O(bs+Y)
UCS Y * Y O(bC* /e) O(bC* /e)
_ We'll talk more
C* /e tiers < about uniform cost

PDF created with pdfFactory Pro trial version www.pdffactory.com

search'’s failure
cases later...

http://www.pdffactory.com

Uniform Cost Problems

§ Remember: explores
Increasing cost contours

§ The good: UCS Is
complete and optimal!

§ The bad:

§ Explores options in every
“direction”

§ No information about goal
location

PDF created with pdfFactory Pro trial version www.pdffactory.com

Goal

http://www.pdffactory.com

Depth-limited search

depth-first search with depth limit |,
l.e., nodes at depth | have no successors

8 Recursive implementation:

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail/cutoff
cutoff-occurred? + false
if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
else if DEPTH[node| = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result + RECURSIVE- DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? + true
else if result +# faidure then return result
if cutoff-occurred? then return cutoff else return failure

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

lterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or fail-
ure
inputs: problem, a problem

for depth< 0 to oo do
result +— DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

lterative deepening search | =0

Limit =0 +(2) []

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

lterative deepening search | =1

Limit=1 b@ @)
p) [C) B

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

lterative deepening search | =2

Limit =2 »(2) () @ (3
»(C) [£) p{L)
[4)
(T ® 3

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

lterative deepening search | =3

Limit =3 10)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

lterative deepening search

§ Number of nodes generated in a depth-limited search to
depth d with branching factor b:

Np s =b%+bl+b2+ ... +bd2+pdl+ pd

§ Number of nodes generated in an iterative deepening
search to depth d with branching factor b:

Nps = (d+1)b% + d bM + (d-1)b™ + ... + 3b92 +2bd-1 + 1bd

§ Forb=10,d =25,
§ Ny =1+ 10+ 100 + 1,000 + 10,000 + 100,000 = 111,111
§ N,pg =6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

§ Overhead = (123,456 - 111,111)/111,111 = 11%

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

lterative Deepening

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of
length 1 or less. (DFS gives up on any path of

length 2)

2. If “1” failed, do a DFS which only searches paths
of length 2 or less.

3. If “2” failed, do a DFS which only searches paths
of length 3 or less.

....and so on.
Algorithm Complete |Optimal |Time Space

/ Path m
DFS | P Y N O(b™) O(bm)
BFS Y N* O(bs*1) O(bs+t)
ID Y N* O(bd) O(bd)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes Yes No No Yes
Time oY) o€y o@wm) O(b') O(b?)
Space OB+t oW /)y O(bm) O(bl) O(bd)
Optimal? Yes Yes No No Yes

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Extra Work?

§ Failure to detect repeated states can cause
exponentially more work. Why?

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Graph Search

§ In BFS, for example, we shouldn’t bother
expanding the circled nodes (why?)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Graph Search

§ Very simple fix: never expand a node twice

function GrRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed <— an empty set
fringe — INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if fringe is empty then return failure

node — REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE[node]) then return node

if STATE[n0de] is not in closed then
add STATE[nod¢] to closed <
fringe «— INSERTA LL(EXPAND(node, problem), fringe)

end

§ Can this wreck correctness? Why or why not?

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Search Gone Wrong?

Micrusoft”
Point’ lr
& -
ICELAND 3 g 3
; =3 =
e > 3
ey > DS
F . RUSSIA :E z
ATLANTIC M m‘@ Lo e 2)
< Phretsinki Toer e £/5;
e 2N §
e L e 2
o @ Smslensk e

W : o
1 Yilnius _~ i
i i
Biskystok, 5, BELARUS

POLAND 'qux" Kievy
Wrochw » |\ pAIHE

-

1000

200 400 &00

Start: Haugesund, Rogaland, Morway

End: Trondheim, Ser-Trendelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

nrk.no/alltidmoro

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

